If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-17x^2+51x+36=0
a = -17; b = 51; c = +36;
Δ = b2-4ac
Δ = 512-4·(-17)·36
Δ = 5049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5049}=\sqrt{9*561}=\sqrt{9}*\sqrt{561}=3\sqrt{561}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-3\sqrt{561}}{2*-17}=\frac{-51-3\sqrt{561}}{-34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+3\sqrt{561}}{2*-17}=\frac{-51+3\sqrt{561}}{-34} $
| 4a+5=3a-7 | | 10=-(x-2) | | y^2+12y+1=16 | | -6(2x+6)=-75 | | 102x32=32 | | 102x32=12 | | 6x+6=8x-22 | | 4x=(6x+10) | | (5x-10)=(x+70) | | 12f+15=3 | | (9x+18)=(11x+2) | | (11x-5)=116 | | -11y+28y=11 | | (a/5)+8=9 | | 40=6q+6q2=40 | | X/5+x/2=7/4 | | r^2-4r+4=9 | | 1x+8=10+3× | | 5+7x=84 | | 0=x^+5×-7 | | (r/2)+6=5 | | 6(x+2)+-5x+-2=2x+x+-60 | | m^2+16m-20=0 | | m6-(m/6)-8=0 | | z2z-4-z=4 | | m^2+26m-20=0 | | 0.9^x=3 | | (n+3)+2(n+3)=3 | | 5(3x+9)-2x=15x-2)x-5) | | -4r-5r=30 | | 6(3x+9)-2x=15x-2(x-5) | | 28+7x=20+1x |